organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,2-Dicyclopentylethane-1,2-diol

Richard Betz, Sonja Herdlicka and Peter Klüfers*

Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 30 August 2007; accepted 3 September 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.060; wR factor = 0.185; data-to-parameter ratio = 20.0.

The title compound, $C_{12}H_{22}O_2$, was accidentally prepared as a sterically demanding vicinal diol in the attempted preparation of dicyclopentylglycolic acid. The cyclopentyl rings adopt envelope conformations. Intermolecular hydrogen bonds are present in the structure.

Related literature

The title compound was accidentally prepared in the attempted preparation of dicyclopentylglycolic acid by analogy with a literature procedure (Gauerke & Marvel, 1928).

Experimental

Crystal data

C ₁₂ H ₂₂ O ₂	a = 22.5500 (7) Å
$M_r = 198.30$	b = 5.6290(1) Å
Monoclinic, $C2/c$	c = 17.9416 (6) Å

```
\beta = 91.255 (2)^{\circ}

V = 2276.85 (11) \text{ Å}^3

Z = 8

Mo K\alpha radiation
```

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 4812 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.185$ S = 1.062604 reflections 130 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overrightarrow{O1-H1\cdots O2^{i}}$	0.84	2.00	2.8218 (16)	168
$O2-H2\cdots O1^{ii}$	0.84	1.96	2.7656 (16)	162

 $\mu = 0.08 \text{ mm}^{-1}$

T = 200 (2) K

 $R_{\rm int} = 0.030$

 $0.27 \times 0.08 \times 0.06 \text{ mm}$

2604 independent reflections

Only H-atom displacement

parameters refined

 $\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$

1881 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Peter Mayer for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2290).

References

Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Gauerke, C. G. & Marvel, C. S. (1928). J. Am. Chem. Soc. 50, 1178–1182.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). *SHELXL97* and *SHELXS97*. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3986 [doi:10.1107/S1600536807042961]

1,2-Dicyclopentylethane-1,2-diol

R. Betz, S. Herdlicka and P. Klüfers

Comment

The title compound, $C_{12}H_{22}O_2$, was accidentally prepared as sterically demanding vicinal diol on the attempted preparation of dicyclopentylglycolic acid. The cyclopentyl rings adopt envelope conformations. Intermolecular hydrogen bonds are present in the structure. It was obtained as high-boiling by-product from the reaction between cyclopentyl magnesium bromide and diethyloxalate followed by aqueous workup.

The molecular structure is shown in Fig. 1. Intermolecular hydrogen bonds between the hydroxyl-groups are present in the structure (Fig. 2).

Experimental

The title compound was accidentially prepared on the attempted preparation of dicyclopentylglycolic acid in analogy to a literature procedure (Gauerke & Marvel, 1928) by reaction of cyclopentyl magnesium bromide with diethyloxalate followed by aqueous workup. It was obtained as high-boiling fraction crystallizing upon storage at room temperature.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms. One common isotropic displacement parameter for all H atoms was refined to $U_{iso}(H) = 0.085$ (2).

Figures

Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2. The packing of (I), viewed along [T 0 0]. H atoms omitted for clarity except for the O bonded H atoms.

1,2-Dicyclopentylethane-1,2-diol

Crystal data	
C ₁₂ H ₂₂ O ₂	$F_{000} = 880$
$M_r = 198.30$	$D_{\rm x} = 1.157 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 12652 reflections
a = 22.5500 (7) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 5.62900 (10) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.9416 (6) Å	T = 200 (2) K
$\beta = 91.255 \ (2)^{\circ}$	Rod, colourless
$V = 2276.85 (11) \text{ Å}^3$	$0.27\times0.08\times0.06~mm$
Z = 8	

Data collection

Nonius KappaCCD diffractometer	1881 reflections with $I > 2\sigma(I)$
Radiation source: rotating anode	$R_{\rm int} = 0.030$
Monochromator: MONTEL, graded multilayered X-ray optics	$\theta_{\text{max}} = 27.5^{\circ}$
T = 200(2) K	$\theta_{\min} = 3.6^{\circ}$
φ/ω–scan	$h = -28 \rightarrow 28$
Absorption correction: none	$k = -7 \rightarrow 6$
4812 measured reflections	$l = -23 \rightarrow 23$
2604 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	Only H-atom displacement parameters refined
$wR(F^2) = 0.185$	$w = 1/[\sigma^2(F_o^2) + (0.0927P)^2 + 1.7562P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2604 reflections	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
130 parameters	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.19267 (5)	0.9503 (2)	-0.00195 (8)	0.0370 (4)
H1	0.1863	1.0961	-0.0082	0.085 (2)*
O2	0.18742 (5)	0.4504 (2)	-0.01071 (7)	0.0346 (3)
H2	0.2216	0.5098	-0.0109	0.085 (2)*
C11	0.13749 (7)	0.8286 (3)	0.00517 (10)	0.0316 (4)
H11	0.1127	0.9189	0.0410	0.085 (2)*
C12	0.10422 (8)	0.8168 (3)	-0.06917 (11)	0.0356 (4)
H12	0.1275	0.7180	-0.1044	0.085 (2)*
C13	0.09340 (10)	1.0604 (4)	-0.10395 (14)	0.0561 (6)
H131	0.0823	1.1771	-0.0654	0.085 (2)*
H132	0.1295	1.1177	-0.1288	0.085 (2)*
C14	0.04305 (11)	1.0267 (4)	-0.16023 (15)	0.0632 (7)
H141	0.0587	0.9963	-0.2105	0.085 (2)*
H142	0.0176	1.1699	-0.1625	0.085 (2)*
C15	0.00808 (10)	0.8134 (5)	-0.13313 (15)	0.0594 (6)
H151	-0.0325	0.8621	-0.1197	0.085 (2)*
H152	0.0051	0.6910	-0.1727	0.085 (2)*
C16	0.04134 (9)	0.7162 (4)	-0.06535 (13)	0.0481 (5)
H161	0.0421	0.5404	-0.0666	0.085 (2)*
H162	0.0222	0.7678	-0.0189	0.085 (2)*
C21	0.15098 (8)	0.5835 (3)	0.03865 (10)	0.0335 (4)
H21	0.1123	0.4974	0.0417	0.085 (2)*
C22	0.17734 (9)	0.5939 (3)	0.11726 (11)	0.0402 (5)
H22	0.2130	0.6995	0.1175	0.085 (2)*
C23	0.19545 (12)	0.3478 (4)	0.14780 (12)	0.0555 (6)
H231	0.1688	0.2227	0.1275	0.085 (2)*
H232	0.2368	0.3095	0.1346	0.085 (2)*
C24	0.18967 (11)	0.3682 (4)	0.23172 (12)	0.0559 (6)
H241	0.1821	0.2111	0.2544	0.085 (2)*
H242	0.2259	0.4374	0.2550	0.085 (2)*
C25	0.13821 (17)	0.5284 (7)	0.24015 (15)	0.0936 (12)
H251	0.1015	0.4333	0.2445	0.085 (2)*
H252	0.1434	0.6239	0.2862	0.085 (2)*

supplementary materials

C26	0.13290 (11)	0.6878 (4)	0.17485 (12)	0.0518 (6)
H261	0.1428	0.8532	0.1892	0.085 (2)*
H262	0.0920	0.6845	0.1538	0.085 (2)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0323 (6)	0.0247 (6)	0.0538 (8)	-0.0004 (5)	-0.0027 (5)	0.0035 (5)
O2	0.0353 (6)	0.0234 (6)	0.0452 (8)	0.0019 (5)	0.0049 (5)	-0.0019 (5)
C11	0.0305 (8)	0.0252 (8)	0.0391 (10)	0.0024 (6)	0.0036 (7)	-0.0001 (7)
C12	0.0335 (9)	0.0310 (9)	0.0422 (10)	0.0019 (7)	0.0000 (7)	0.0010 (7)
C13	0.0566 (13)	0.0442 (12)	0.0665 (15)	-0.0093 (10)	-0.0210 (11)	0.0201 (11)
C14	0.0619 (14)	0.0542 (13)	0.0721 (17)	-0.0039 (11)	-0.0278 (12)	0.0120 (12)
C15	0.0421 (11)	0.0650 (15)	0.0704 (16)	-0.0022 (10)	-0.0122 (10)	0.0034 (12)
C16	0.0387 (10)	0.0393 (10)	0.0661 (14)	-0.0053 (8)	-0.0039 (9)	0.0039 (9)
C21	0.0333 (9)	0.0262 (8)	0.0413 (10)	0.0024 (7)	0.0069 (7)	0.0026 (7)
C22	0.0463 (10)	0.0350 (9)	0.0394 (11)	0.0041 (8)	0.0039 (8)	0.0050 (8)
C23	0.0762 (15)	0.0459 (12)	0.0447 (12)	0.0224 (11)	0.0076 (10)	0.0126 (9)
C24	0.0754 (15)	0.0497 (12)	0.0421 (12)	0.0032 (11)	-0.0056 (10)	0.0060 (10)
C25	0.124 (3)	0.109 (3)	0.0483 (15)	0.059 (2)	0.0312 (16)	0.0249 (16)
C26	0.0691 (14)	0.0417 (11)	0.0451 (12)	0.0119 (10)	0.0118 (10)	0.0035 (9)

Geometric parameters (Å, °)

O1—C11	1.428 (2)	C16—H161	0.9900
O1—H1	0.8400	C16—H162	0.9900
O2—C21	1.433 (2)	C21—C22	1.520 (3)
O2—H2	0.8400	C21—H21	1.0000
C11—C12	1.517 (2)	C22—C23	1.541 (3)
C11—C21	1.533 (2)	C22—C26	1.548 (3)
C11—H11	1.0000	C22—H22	1.0000
C12—C13	1.524 (3)	C23—C24	1.518 (3)
C12—C16	1.530 (3)	C23—H231	0.9900
C12—H12	1.0000	С23—Н232	0.9900
C13—C14	1.515 (3)	C24—C25	1.480 (4)
C13—H131	0.9900	C24—H241	0.9900
C13—H132	0.9900	C24—H242	0.9900
C14—C15	1.522 (3)	C25—C26	1.479 (3)
C14—H141	0.9900	C25—H251	0.9900
C14—H142	0.9900	C25—H252	0.9900
C15—C16	1.517 (3)	C26—H261	0.9900
C15—H151	0.9900	C26—H262	0.9900
C15—H152	0.9900		
C11—O1—H1	109.5	H161—C16—H162	108.7
С21—О2—Н2	109.5	O2—C21—C22	112.06 (14)
O1—C11—C12	110.94 (14)	O2—C21—C11	109.88 (13)
O1—C11—C21	107.51 (13)	C22—C21—C11	113.56 (15)
C12—C11—C21	113.26 (14)	O2—C21—H21	107.0

O1—C11—H11	108.3	C22—C21—H21		107.0
C12—C11—H11	108.3	C11—C21—H21		107.0
C21—C11—H11	108.3	C21—C22—C23		113.01 (17)
C11—C12—C13	113.06 (15)	C21—C22—C26		112.74 (16)
C11—C12—C16	114.70 (16)	C23—C22—C26		103.89 (16)
C13—C12—C16	102.19 (15)	C21—C22—H22		109.0
C11—C12—H12	108.9	С23—С22—Н22		109.0
C13—C12—H12	108.9	С26—С22—Н22		109.0
C16—C12—H12	108.9	C24—C23—C22		104.89 (17)
C14—C13—C12	105.73 (17)	С24—С23—Н231		110.8
C14—C13—H131	110.6	С22—С23—Н231		110.8
C12—C13—H131	110.6	С24—С23—Н232		110.8
C14—C13—H132	110.6	С22—С23—Н232		110.8
C12—C13—H132	110.6	H231—C23—H232		108.8
H131—C13—H132	108.7	C25—C24—C23		103.41 (19)
C13—C14—C15	105.77 (19)	C25—C24—H241		111.1
C13—C14—H141	110.6	C23—C24—H241		111.1
C15-C14-H141	110.6	С25—С24—Н242		111.1
C13—C14—H142	110.6	С23—С24—Н242		111.1
C15-C14-H142	110.6	H241—C24—H242		109.0
H141—C14—H142	108.7	C26—C25—C24		109.8 (2)
C16—C15—C14	106.86 (18)	C26—C25—H251		109.7
C16—C15—H151	110.3	C24—C25—H251		109.7
C14—C15—H151	110.3	С26—С25—Н252		109.7
C16—C15—H152	110.3	C24—C25—H252		109.7
C14—C15—H152	110.3	H251—C25—H252		108.2
H151—C15—H152	108.6	C25—C26—C22		106.20 (18)
C15—C16—C12	105.86 (17)	C25—C26—H261		110.5
C15-C16-H161	110.6	С22—С26—Н261		110.5
C12—C16—H161	110.6	С25—С26—Н262		110.5
C15—C16—H162	110.6	С22—С26—Н262		110.5
C12—C16—H162	110.6	H261—C26—H262		108.7
O1-C11-C12-C13	-56.3 (2)	O1-C11-C21-C22		64.27 (18)
C21—C11—C12—C13	-177.36 (16)	C12—C11—C21—C22		-172.80 (14)
O1-C11-C12-C16	-172.99 (14)	O2—C21—C22—C23		-50.0 (2)
C21-C11-C12-C16	65.99 (19)	C11—C21—C22—C23		-175.26 (16)
C11—C12—C13—C14	-160.39 (19)	O2—C21—C22—C26		-167.46 (15)
C16-C12-C13-C14	-36.6 (2)	C11—C21—C22—C26		67.3 (2)
C12-C13-C14-C15	25.7 (3)	C21—C22—C23—C24		-151.59 (18)
C13-C14-C15-C16	-4.3 (3)	C26—C22—C23—C24		-29.1 (2)
C14-C15-C16-C12	-18.6 (3)	C22—C23—C24—C25		34.7 (3)
C11—C12—C16—C15	156.42 (17)	C23—C24—C25—C26		-27.6 (4)
C13—C12—C16—C15	33.7 (2)	C24—C25—C26—C22		9.4 (4)
O1—C11—C21—O2	-62.12 (17)	C21—C22—C26—C25		135.1 (2)
C12—C11—C21—O2	60.81 (18)	C23—C22—C26—C25		12.4 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H…A

supplementary materials

O1—H1···O2 ⁱ	0.84	2.00	2.8218 (16)	168	
O2—H2···O1 ⁱⁱ	0.84	1.96	2.7656 (16)	162	
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1/2, -y+3/2, -z$.					

Fig. 1

